Synthesis of (-)-Hyatellaquinone and Revision of Absolute Configuration of Naturally Occurring (+)-Hyatellaquinone

Stéphane Poigny, Thomas Huor, Michèle Guyot, and Mohammad Samadi*

Laboratoire de Chimie, ESA 8041 CNRS, Muséum National d'Histoire Naturelle, 63 rue Buffon, F-75005 Paris, France

Received July 7, 1999

More than a hundred sesquiterpene quinones or quinols from marine sources have been reported, the majority of which have been isolated from sponges. Many of them exhibit a variety of promising biological activities such as antimicrobial, antiviral, cytotoxic, and immunomodulatory effects.¹ However, their absolute configuration has been difficult to establish and still remains the subject of controversy. Among them is the marine natural product (+)-hyatellaquinone 1, which was isolated from the active anti-HIV RTs extracts of the sponge Hyatella intestinalis (Spongidae) by Kashman et a1.² Although the authors correctly assigned the relative configuration of (+)-hyatellaquinone as **1a** on the basis of comparison of spectral data with that of naturally occurring (+)-zonarol 2a,³ the absolute configuration of zonarol, a seaweed metabolite, was later revised after chemical degradation⁴ and two enantiomerically controlled syntheses^{5,6} and assigned as **2b** with (1*R*,4a*R*,8a*R*) stereochemistry at the chiral centers of the drimane skeleton. The same sesquiterpene quinone $\mathbf{1a}$ was reported by Capon et al⁷ from Spongia sp. as an isomer of spongiaquinone, but the absolute configuration was not firmly established because of the paucity of available material (Figure 1).

As a part of our program directed toward the synthesis of bioactive marine natural products, we undertook the synthesis of **1a**, starting from the optically active (+)-sclareolide (**3**) bearing the right stereochemistry of the chiral centers at C-1, C-4a, and C-8a required for the drimane skeleton. The strategy that we adopted for the synthesis of **1a** (vide infra) is based on coupling the aldehyde **10** derived from sclareolide with the lithium anion of 1,2,4,5-tetramethoxybenzene as precursor of the quinone moiety. Previously, we have reported ⁸ that a quinone system such as **1** could be prepared by oxidation of substituted 1,2,4,5-tetramethoxybenzene with ceric ammonium nitrate (CAN), which provokes formation of

Figure 1.

i: 2.5 equiv of SOCl₂, 1 equiv of 4-DMAP, pyridine, -30 to 0 °C, 1 h; ii: 0.375 equiv of mCPBA, CH₂Cl₂-5% aq NaHCO₃ (1:1), 0 °C, 1 h (60% for 2 steps); iii: 3 equiv of KOH, MeOH, rt, 1 h (100%); iv: 2 equiv of PDC, CH₂Cl₂, 0 °C to rt, 4 h (84%).

the quinone and deprotection of the more hindered methyl ether in one step to provide the desired 2-hydroxy-5-methoxy-1,4-benzoquinone. As outlined below, herein we report the total synthesis of (1.5,4a.5,8a.5)-hyatellaquinone **1a**, which enabled us to assign the (1.7,4a.7,8a.7) stereochemistry to the naturally occurring (+)hyatellaquinone **1b** by comparison of optical rotations.

The commercially available sclareolide **3** was transformed to the known acetate **4** over two steps according

^{*} Corresponding author. Phone: 33-1-40-79-31-44. Fax: 33-1-40-79-31-45. E-mail: Samadi@mnhn.fr.

⁽¹⁾ Capon, R. J. Marine Sesquiterpene/Quinones. In *Studies in Natural Products Chemistry*; Atta-ur-Rahman, Ed.; Elsevier Science: New York, 1995; Vol. 15, pp 289–326.

⁽²⁾ Talpir, R.; Rudi, A.; Kashman, Y.; Loya, Y.; Hizi, A. *Tetrahedron* **1994**, *50*, 4179.

⁽³⁾ Fenical, W.; Sims, J. J.; Squatrito, D.; Wing, R. M.; Radlick, P. J. Org. Chem. **1973**, *38*, 2383.

⁽⁴⁾ Cimino, G.; de Stephano, S.; Fenical, W.; Minale, L.; Sims, J. J. *Experientia* **1975**, *31*, 1250.

⁽⁵⁾ Mori, K.; Komatsu, M. Bull. Soc. Chim. Belg. **1986**, *95*, 771. (6) Akita, H.; Nozawa, M.; Shimizu, H. Tetrahedron: Asymmetry

¹⁹⁹⁸, *9*, 1789. (7) Capon, R. J.; Groves, D. R.; Urban, S.; Watson, R. Aust. J. Chem.

⁽¹⁾ Capon, K. J., Groves, D. K., Orban, S., Watson, K. Aust. J. Chem. 1993, 46, 1245.

^{(8) (}a) Poigny, S.; Guyot, M.; Samadi, M. *J. Org. Chem.* **1998**, *63*, 5890. (b) Poigny, S.; Guyot, M.; Samadi, M. *Tetrahedron* **1998**, *54*, 14791.

(i) 3 equiv of **11**, 2.5 equiv BuLi, THF, 0 °C, 30 min, then 1 equiv of **10**, THF, rt, 30 min (74%); (ii) Ac₂O, cat 4-DMAP, pyridine, rt, 24 h; (iii) 10 equiv of Li, liquid NH₃, THF, -78 °C, 15 min (93% for 2 steps); (iv) 2.5 equiv of CAN, CH₃CN-H₂O, 0 °C to rt, 4 h (58% for 1a, 26% for 15).

to the procedure described in the literature.⁹ Dehydration of tertiary alcohol 4 (2.5 equiv of SOCl₂, 1 equiv of 4-DMAP, pyridine) afforded, in quantitative yield, an inseparable mixture of exo and endo olefins **5** ($\Delta^{2,9}$: $\Delta^{2,3}$: $\Delta^{1,2}$ in a ratio of 6.25:2.5:1.25). To circumvent this difficulty, partial epoxidation of the crude mixture of olefins 5 by careful treatment with 0.375 equiv of *m*-CPBA at 0 °C for 1 h gave the more polar epoxides 6 and **7** and left the unreacted pure $\Delta^{2,9}$ -*exo*-olefin **8** in 60% yield over two steps. Deprotection of acetate 8 (3 equiv of KOH, MeOH) provided alcohol 9, which was identical in all respects (IR, NMR, MS, $[\alpha]_D$) with the known naturally occurring (+)-albicanol, a potent fish antifeedant, isolated both from the liverwort Diplophyllum albicans¹⁰ and the marine dorid nudibranch Cadlina luteomarginata.¹¹ Oxidation of alcohol 9 with PDC in CH₂Cl₂ furnished the desired aldehyde 1012 in 84% yield (Scheme 1).

Coupling the above aldehyde 10 with the lithium anion of 1,2,4,5-tetramethoxybenzene 11^{8b,13} (3 equiv of 11, 2.5 equiv of BuLi, THF, 0 °C) afforded the addition compound 12 as a mixture of diastereomers in 74% yield. Benzylic deoxygenation was accomplished by first acetylating 12 (Ac₂O, catalytic 4-DMAP, pyridine, room temperature) to give 13 and then deacetoxylating this (10 equiv of Li, liquid NH₃, THF, -78 °C) to provide 14 in 93% yield over two steps. Finally, compound 14 was treated with ceric ammonium nitrate to accomplish deprotection of the methyl ether and formation of the quinone system. Thus,

slow addition of a solution of ceric ammonium nitrate (2.5 equiv, CH₃CN-H₂O) to compound **14** at 0 °C and stirring for 4 h at room temperature afforded the desired hyatellaquinone **1a** (58%) along with compound **15** (26%) (Scheme 2).

The synthetic hyatellaquinone **1a** obtained here was identical by IR, NMR, and MS with natural hyatellaquinone. However, the optical rotation for the synthetic product **1a** ($[\alpha]_D$ –16.1) was of opposite sign to that of the natural product ($[\alpha]_D$ +15.6).¹ Moreover, the optical rotation of the synthetic dimethoxy *p*-quinone **15** ($[\alpha]_D$ -37) has the opposite sign to the methylated natural hyatellaquinone⁷ ([α]_D +37) prepared by Capon et al. These results confirm that the absolute configuration at the stereogenic centers of the natural (+)-hyatellaquinone **1b** is (1*R*,4a*R*,8a*R*), as depicted in Figure 1.

In summary, we have described the first total synthesis of the enantiomer 1a of the naturally occurring (+)hyatellaquinone **1b**, which allowed us to establish its absolute stereochemistry and a short synthesis of (+)albicanol¹⁴ from the readily available sclareolide. Preliminary biological study showed that the synthetic (-)hyatellaquinone **1a** is cytotoxic, with an IC₅₀ of 14 μ M against KB cells. Further biological evaluation of 1a is currently underway.

Experimental Section

All of the reactions were carried out under an argon atmosphere. All reagents were obtained from commercial suppliers and used without further purification. THF was freshly distilled from sodium/benzophenone. Methylene chloride was distilled from CaH₂. Flash chromatography was carried out using silica

⁽⁹⁾ Kuchkova, K. I.; Chumakov, Y. M.; Simonov, Y. A.; Bocelli, G.; Panasenko, A. A.; Vlad, P. F. Synthesis 1997, 1045.
 (10) Ohta, Y.; Andersen, N. H.; Liu, C. B. Tetrahedron 1977, 33,

⁶¹⁷

⁽¹¹⁾ Hellou, J.; Andersen, R. J.; Thompson, J. E. Tetrahedron 1982, 38, 1875.

⁽¹²⁾ Toyota, H.; Ooisa, Y.; Kusuyama, T.; Asakawa, Y. Phytochemistry 1994, 35, 1263. Weyerstahl, P.; Schwieger, R.; Schwope, I.; Hashem, M. A. Liebigs Ann. 1995, 1389.

⁽¹³⁾ Benington, F.; Morin, R. D. *J. Org. Chem.* **1955**, *20*, 102. Keegstra, E. M. D.; Huisman, B.-H.; Paardekooper, E. M.; Hoogesteger, F. J.; Zwikker, J. W.; Jenneskens, L. W.; Kooijman, H.; Schouten, A.; Veldman, N.; Spek, A. L. J. Chem. Soc., Perkin Trans. 2 1995, 229.

⁽¹⁴⁾ For previous synthesis of racemic and (+)-albicanol, see: Armstrong, R. J.; Harris, F. L.; Weiler, L. Can. J. Chem. **1986**, 64, 10002. Ragoussis, V.; Liapis, M.; Ragoussis, N. J. Chem. Soc., Perkin Trans. 1 1987, 987. Shishido, K.; Tokunaga, Y.; Omachi, N.; Hiroya, K.; Fukumoto, K.; Kamentani, T. J. Chem. Soc., Perkin Trans. 1 1990, 2481. Nakano, T.; Villamizar, J.; Maillo, M. A. J. Chem. Res., Synop. 1995, 330. Banerjee, A. K.; Correa, J. A.; Laya-Mimmo, M. J. Chem. Res., Synop. 1998, 710.

gel 60 F254 (Merck) with mixtures of ethyl acetate and hexane as eluent unless specified otherwise. TLC analyses were performed on thin-layer analytical plates 60 F254 (Merck).

1-Naphthalenemethanol, Decahydro-5,5,8a-trimethyl-2methylene Acetate (1S,4aS,8aS)- [(+)-Albicanyl acetate (8)]. To a solution of acetate 4 (1 mmol, 294 mg) and 4-DMAP (1 mmol, 122 mg) in dry pyridine (5 mL) at -30 °C was added SOCl₂ (2.5 mmol, 0.182 mL) dropwise. The mixture was stirred for 1 h at this temperature and then warmed to 0 °C. The reaction was quenched with ice, and the pyridine was removed in vacuo. The residue was dissolved in ether, washed successively with water, saturated NaHCO₃, and brine, and dried over MgSO₄. The solvent was evaporated under reduced pressure to give compound 5, which was dissolved in a 1:1 mixture of CH₂- ${
m Cl}_2$ and ${
m 5}\%$ aqueous NaHCO $_3$ (10 mL) followed by addition of m-CPBA (0.375 mmol, 65 mg) at 0 °C. The mixture was stirred at this temperature for 1 h, extracted with CH₂Cl₂, and washed with water and brine. The organic layer was dried over MgSO₄ and concentrated. The residue was purified over silica gel using hexanes-EtOAc (98:2) as eluent to afford the exo-olefin 8 (161 mg, 61%) as a colorless oil: $R_f 0.48$ (hexanes–EtOAc, 95:5); $[\alpha]_D$ +23.1 (c 1.1, CHCl₃); lit. $[\alpha]_D$ +22 (c 0.37, CHCl₃); MS m/z (CI) 265 (MH⁺); IR (neat) 1735, 1640, 895 cm⁻¹; ¹H NMR (CDCl₃) δ 4.85 (d, J = 1.2 Hz, 1H), 4.51 (d, J = 1.2 Hz, 1H), 4.33 (dd, J =11.4 Hz, 3.9 Hz, 1H), 4.18 (dd, J = 11.2 Hz, 9.0 Hz, 1H), 2.40 (m, 1H), 2.02 (s, 3H), 0.88 (s, 3H), 0.86 (s, 3H), 0.78 (s, 3H); 13C NMR (CDCl₃) & 171.4, 146.8, 107.1, 61.5, 60.5, 55.0, 54.7, 41.9, 39.0, 37.6, 33.6, 33.4, 23.9, 21.7, 21.1, 19.1, 15.1; HRMS (CI) calcd for C17H29O2 (MH+) 265.2168, found 265.2163.

1-Naphthalenemethanol, Decahydro-5,5,8a-trimethyl-2methylene-(1S,4aS,8aS)- [(+)-Albicanol (9)]. To a solution of olefin 8 (0.6 mmol, 160 mg) in MeOH (4 mL) was added KOH (3 mmol, 168 mg), and the mixture was stirred at room temperature for 1 h. The solvent was removed in vacuo, and the residue was dissolved with ether. The organic layer was washed with water and brine, dried over MgSO₄, and concentrated. Purification over silica gel using hexanes-EtOAc (8:2) gave compound 9 (134 mg, 100%) as a white solid: mp 67-68 C; lit.¹¹ mp 68–69 °C; R_{f} 0.42 (hexanes–EtOAc, 8:2); $[\alpha]_{D}$ +13.4 $(c 0.84, CHCl_3)$; lit. $[\alpha]_D + 13.0$ ($c 0.6, CHCl_3$); MS m/z (CI) 223 (MH⁺); IR (KBr) 3350, 2920, 1635, 900 cm⁻¹; ¹H NMR (CDCl₃) δ 4.95 (s, 1H), 4.64 (d, J = 1.1 Hz, 1H), 3.84 (dd, J = 10.9 Hz, 1H), 3.75 (t, J = 10.9 Hz, 1H), 2.42 (m, 1H), 2.05 (m, 1H), 0.86 (s, 3H), 0.82 (s, 3H), 0.76 (s, 3H); ¹³C NMR (CDCl₃) & 147.7, 106.3, 59.0, 58.6, 55.1, 41.9, 38.9 (2C), 37.8, 33.6, 33.4, 24.1, 21.7; 19.1, 15.2; HRMS (CI) calcd for C15H27O (MH+) 223.2062, found 223.2059

1-Naphthalenecarboxaldehyde, Decahydro-5,5,8a-trimethyl-2-methylene-(1S,4aS,8aS)-[(-)-Albicanal (10)]. To a solution of alcohol 9 (0.92 mmol, 204 mg) in dry CH₂Cl₂ (5 mL) was added PDC (1.83 mmol, 690 mg) at 0 °C, and the reaction was stirred for 4 h at room temperature. The CH₂Cl₂ was evaporated in vacuo, the residue was triturated with ether and filtered, and the solvent was evaporated under reduced pressure. The residue was subjected to flash chromatography using hexanes-EtOAc (95:5) as eluent to give aldehyde 10 (170 mg, 84%) as a colorless oil; R_{f} 0.72 (hexanes-EtOAc, 95:5); $[\alpha]_{D}$ -67.3 (c 1.83, CHCl₃); lit.¹² [α]_D -69.8 (c 0.5, CHCl₃); MS m/z (CI) 237 (MH⁺ + CH₄); IR (neat) 2929, 2726, 1720; 1643, 1472, 892 cm⁻¹; ¹H NMR (CDCl₃) δ 9.79 (d, J = 4.5 Hz, 1H), 4.84 (s, 1H), 4.43 (s, 1H), 2.36 (m, 2H), 2.03 (m, 1H), 1.63 (m, 1H), 1.52 (m, 1H), 1.15 (m, 2H), 1.07 (s, 3H), 0.81 (s, 3H), 0.79 (s, 3H); ¹³C NMR (CDCl₃) & 205.0, 144.8, 109.0; 67.6, 53.7; 41.7, 39.6, 38.8, 36.5, 33.3, 33.2, 22.9, 21.7, 18.5, 15.8; HRMS (CI) calcd for C₁₅H₂₅O (MH⁺) 221.1905, found 221.1903.

3-[[(1.5,4a.5,8a.5)-Decahydro-5,5,8a-trimethyl-2-methylene-1-naphthalenyl]methyl]-2,3,5,6-tetramethoxybenzene (14). To a solution of 1,2,4,5-tetramethoxybenzene **11** (1.02 mmol, 202 mg) in dry THF (2 mL) was added dropwise *n*-BuLi (1.6 M in hexane, 0.53 mL, 0.85 mmol) at 0 °C. After 30 min of stirring at this temperature, a solution of aldehyde **10** (0.34 mmol, 75 mg) in dry THF (2 mL) was added. The reaction was stirred for an additional 30 min at 25 °C, quenched with saturated NH₄Cl, and extracted with ether. The organic layer was washed with water and brine, dried over MgSO4, and concentrated. The residue was purified over silica gel (hexanes-EtOAc, 7:3) to give compound 12 (106 mg, 74%), which was dissolved in pyridine (2 mL), followed by addition of 4-DMAP (0.05 mmol, 6 mg) and acetic anhydride (2.5 mmol, 0.24 mL). The mixture was stirred overnight at 25 °C and concentrated in vacuo. The residue was dissolved in ether, washed successively with water, saturated NaHCO₃, 0.5 N HCl, and brine, dried over MgSO₄, and concentrated. Flash chromatography gave acetylated compound 13 (116 mg, 100%), which was dissolved in dry THF and added dropwise to a stirred solution of Li (2.54 mmol, 18 mg, 10 equiv) in liquid ammonia at -78 °C. The reaction was stirred for an additional 15 min at -78 °C. Solid ammonium chloride was added, and NH₃ was allowed to evaporate. Water was added, and the mixture was extracted with ether. The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The residue was purified over silica gel using hexanes-EtOAc (9:1) as eluent to give 14 (94 mg, 93%) as a white solid: mp 181 °C; R_f 0.29 (hexanes-EtOAc, 9:1); [α]_D -34.2 (c 1.03, CHCl₃); MS m/z (EI) 402 (M⁺); IR (KBr) 2926, 1629, 1596, 1490, 1089, 895 cm $^{-1};$ $^1\mathrm{H}$ NMR (CDCl_3) δ 6.39 (s, 1H), 5.01 (s, 1H), 4.67 (d, J = 0.9 Hz; 1H), 3.82 (s, 6H), 3.75 (s, 6H), 2.76 (m, 2H), 2.58 (m, 1H), 2.24 (m, 1H), 1.90 (m, 2H), 0.86 (s, 3H), 0.82 (s, 3H), 0.81 (s, 3H); ¹³C NMR (CDCl₃) δ 148.8, 148.7, 141.2, 130.6, 106.9, 96.3, 60.7, 56.0, 55.7, 55.5, 42.2, 40.1, 38.6, 38.5, 33.7, 33.6, 24.5, 21.8; 20.1, 19.6, 14.1; HRMS (EI) calcd for C₂₅H₃₈O₄ (M⁺) 402.2770, found 402.2758.

2,5-Cyclohexadiene-1,4-dione, 3-[[(1*S*,4a*S*,8a*S*)-Decahydro-5,5,8a-trimethyl-2-methylene-1-naphthalenyl]methyl]-2-hydroxy-5-methoxy- [(–)-Hyatellaquinone (1a)] and 2,5-Dimethoxy-2,5-cyclohexadiene-1,4-dione, 3-[[(1*S*,4a*S*, 8a*S*)-Decahydro-5,5,8a-trimethyl-2-methylene-1-naphthalenyl]methyl]- (15). To a solution of olefin 13 (40.2 mg, 0.1 mmol) in CH₃CN (5 mL) was added a solution of ammonium cerium(IV) nitrate (137 mg, 0.25 mmol) in CH₃CN-H₂O (2 mL, 1:1) dropwise at 0 °C over 1 h. The reaction was allowed to stir at room temperature for 4 h, and the mixture diluted with ether. The organic layer was washed with water and brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified over silica gel using hexanes–EtOAc (7:3) as eluent to give compounds **15** (9.6 mg, 26%), and hyatellaquinone **1a** (20.7 mg, 58%).

(-)-Hyatellaquinone 1a: yellow oil; R_f 0.28 (hexanes-EtOAc, 7:3); $[\alpha]_D$ -16.1 (*c* 0.4, CHCl₃); lit.² $[\alpha]_D$ +15.6 (*c* 0.5, CHCl₃); MS *m*/*z* (CI) 359 (MH⁺); IR: 3400, 2930, 1640 cm⁻¹; ¹H NMR (CDCl₃) δ 7.30 (s, 1H), 5.80 (s, 1H), 4.70 (s, 1H), 4.67 (s, 1H), 3.84 (s, 3H), 2.58 (dd, *J* = 13.6 Hz, 10.6 Hz, 2H), 2.47 (dd, *J* = 14.0 Hz, 3.0 Hz, 1H), 2.37 (d, *J* = 10.0 Hz, 1H), 2.30 (ddd, *J* = 12.5 Hz, 3.8 Hz, 2.3 Hz, 1H), 1.92 (td, *J* = 12.6 Hz, 4.8 Hz, 1H), 1.72 (d, *J* = 12.3 Hz, 1H), 1.09 (dd, *J* = 12.5 Hz, 2.2 Hz, 1H), 0.87 (s, 3H), 0.81 (s, 3H), 0.77 (s, 3H); ¹³C NMR (CDCl₃) δ 182.5, 182.0, 161.2, 151.5, 148.8, 119.3, 106.6, 102.0, 56.7, 55.4, 54.2, 42.1, 40.1, 38.7, 38.3, 33.6, 29.7, 24.4, 21.7, 19.5, 18.8, 14.1; HRMS (CI) calcd for C₂₂H₃₁O₄ (MH⁺) 359.2222, found 359.2228.

Compound 15: yellow oil; R_{f} 0.48 (hexanes-EtOAc, 7:3); $[\alpha]_{D}$ -37.1 (c 0.15, CHCl₃); lit.⁷ $[\alpha]_{D}$ +37 (c 0.4, CHCl₃); MS m/z (CI) 373 (MH⁺); ¹H NMR (CDCl₃) δ 5.67 (s, 1H), 4.68 (s, 1H), 4.67 (s, 1H), 4.06 (s, 3H), 3.78 (s, 3H), 2.68 (dd, J = 13.7 Hz, 10.8 Hz, 1H), 2.50 (dd, J = 13.7 Hz, 3.1 Hz, 1H), 2.29 (m, 2H), 1.91 (td, J = 12.1 Hz, 4.5 Hz, 1H), 0.87 (s, 3H), 0.81 (s, 3H), 0.76 (s, 3H); HRMS (CI) calcd for C₂₃H₃₃O₄ (M + H⁺) 373.2379, found 373.2372.

Supporting Information Available: ¹H and ¹³C NMR of (–)-hyatellaquinone **1a** and compounds **8–10** and **12–15**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO9910886